
A TINA-like Computational Model and its Implementation within an Object-
Oriented Distributed Transactional Platform

Pier Giorgio Bosco, Ennio Grasso, Giovanni Martini, Corrado Moiso

CSELT
via Reiss Romoli 274 - 10148 Torino (Italy)

e-mail: {bosco,grasso,martini,moiso}@cselt.stet.it

Abstract
This paper describes ODIN (Object Distributed

INterfaces), a prototype implementation of MODA (a
Model for an Object Distributed Architecture), which is
the CSELT model aligned with ISO/ODP Reference
Model. This work presents a prototype implementation
based on OSF/DCE and extends the results of a previous
activity by implementing an extended transaction model.

1. Introduction
The design and deployment of distributed

applications in telecom network systems have led to the
need for introducing modelling concepts to master the
software complexity imposed by the rapidly growing,
highly diversified market demands and to specify
components that are to be installed and administrated in
an independent way.

To achieve such an ambitious, though strategic,
objective, it is under investigation [4] an approach based
on a single conceptual model that is rich enough to
express the descriptive, computational and deployment
needs of different areas like Intelligent Networks, TMN
and Operation Systems. Within this framework, network
and service applications are designed in terms of
interactions between components and formally specified
using computational modelling concepts.

MODA is the computational model proposed by
CSELT and one of the inputs to the TINA-C
computational model [3]. Due to the variety and
complexity of the application requirements that the
architecture intends to support, the computational model
needs to be powerful and adaptable. In particular, the
transaction model offered by MODA allows the
exploitation of a high degree of concurrency, combining
the capability of handling open and closed nested
transactions as a result of invoking transactional
operations.

ODIN [2] is the engineering counterpart of MODA
and has been implemented over OSF/DCE [11] and

Transarc/Encina [12]; though an implementation of
ODIN over a CORBA system [10] is under development .

The first part of the paper outlines the main features
of MODA and in particular its transactional capabilities.
The remainder of the paper describes ODIN in some
details and then its technology implementation.

2. The Computational Model
MODA is based on the object-oriented paradigm and

provides a uniform description of the structure of
different entities (programs, data, network resources,...)
involved in a telecom application. The model addresses
both structural and behavioural aspects by the definition
of templates and primitives.

2.1. Structural aspects
The structure of a distributed system is expressed in

terms of objects interacting through services offered by
interfaces. The objects are clustered into software units,
called building-blocks (BBs), which are units of
modularity, installation, administration, failure and
replication. A BB introduces the following visibility rules
over object interfaces:

• the interfaces visible outside the BB are called
contracts;

• an object can interact with all interfaces provided
by the objects in the same BB and with contracts
provided by objects in other BBs.

A distributed application will consist of one or more
BBs, each installed on a single node (Fig. 1). A BB
(instance) is the instantiation of a parametric BB
template whose internal state and behaviour are
described by a set of object templates, one of which will
be the BB-manager, whose main goal is to initialize the
BB itself. During run-time, a BB forms a scope for
creation and execution of the objects whose templates are
included in the BB template.

The structure and behaviour of the objects in a BB
are described by parametric object templates. Objects are

a unit of functionality and encapsulation and can interact
through services offered by a static set of multiple
interfaces; an object template declares:

• the internal state variables;
• the interfaces provided by the object;
• the methods that implement the operations offered

at the interfaces, and the initialization and the
termination phases of the object.

Fig. 1: distributed application with multiple
building blocks

In MODA, an object interface clusters the
computational entities pertaining to a particular service
and provides the same kind of services defined by OSI
managed objects [5], namely:

• operations to invoke methods of the object;
• attributes to read/write the state variables of the

object;
• notifications to be notified of something that

happens within the object.

2.2. Typing aspects
MODA relies on a type system that guarantees the

correctness of the interactions among objects. In
accordance with the ODP Reference Model [1], the type
system introduces a subtype relation between object
interface types: an interface T1 is subtype of T2 if it
provides more operations, attributes, and notifications.

2.3. Behavioural aspects
The behavioural aspects considered by the model can

be grouped in constructs to:
• perform interactions between objects;
• begin and complete transactions;
• create and delete instances of objects and BB;
• manage concurrent activities;

• access architectural services (e.g. the Trader).

Interaction constructs
A client object can interact with a server object by

means of an interface offered by the latter. MODA
supports two kinds of interactions:

• interrogations, with a request phase and a result
phase;

• announcements, with only the request phase.

An interrogation, in turn, can be performed in either
of two modalities:

• blocking: after having sent the request the client
suspends and waits for the results;

• deferred blocking: after having sent the request the
client continues its internal processing up to a point
where it explicitly blocks and waits for the results.

An invocation permits the client to:
• request the execution of an operation; when the

server object receives the invocation, it executes the
method implementing the behaviour of the
operation;

• request the access of an attribute; when the server
object receives the invocation, it reads/writes the
corresponding state variable;

• express the interest in receiving notifications; a
client object that wishes to receive a particular kind
of notification emitted by a server object must
subscribe to the server by specifying the
notification handler that will be executed when
notifications are received. A notification emitted by
the server object will be delivered to all subscribed
objects.

Transactional behaviour
Like the TINA-C computational model, MODA

supports the nested transaction model [6] on a per object
basis. Nested transactions provide full isolation on the
global level but permit increased modularity and finer
granularity of failure handling than traditional flat
transactions. Initiation of transactions is specified on the
basis of tags associated with object operations. During
the execution of a transactional operation an object can
invoke other transactional operations. This forces an
implicit nesting on the transaction itself leading to a tree
of subtransactions one for each invoked operation.

If the invocation is issued from inside a transaction,
the call spawns a nested transaction in the invoked
object. On the other hand, if the invocation is issued from
outside transactional boundaries, the call starts a top-
level transaction in the invoked object.

Besides nested transactions with full ACID
properties, MODA extends the transactional model by

allowing the definition of "open" nested transactions [7]
so as to relax the ACID paradigm according to the
application requirements.

In the classic nested model a subtransaction transfers
all its locks to the parent at commit. This rule is
mandatory to guarantee atomicity and isolation since a
committed subtransaction may later be rolled back; but
the very same rule may detriment concurrency.
Conversely, an open nested transaction releases its locks
at commit, thereby increasing the parallelism of the
system.

Since the locks acquired by an open subtransaction
are released at commit, abort recovery cannot rely on
traditional rollback: rolling back an open subtransaction
may unintentionally undo the effects of a second possibly
interleaved transaction. Hence, abort recovery is
performed by executing a compensating transaction that
semantically reverses the effects of the subtransaction to
be compensated. This relaxes atomicity since the
compensating transaction need not necessarily undo all
effects of the transaction compensated for, but can result
in a semantic specific repair action.

In MODA, the declaration of a transactional
operation with open semantics must specify two
implementing methods: the primary and the inverse
methods. The primary method implements the actual
behaviour of the operation, whereas the inverse method
will be automatically executed in the event that the
operation has to be compensated. The inverse method
executes as a separate transaction and is supposed to
undo the effects of the whole tree whose root is the
subtransaction compensated for (no nested compensation
is required). Note that the specification of the inverse
methods is not as big a problem as it could seem at first
glance: object interfaces usually provide inverse
operations (it would be of little value if the object did not
allow some means to undo operations).

Concurrency control
MODA addresses both inter-object and intra-object

concurrency (i.e. more execution threads in the same
object). The model introduces two mechanisms to control
and synchronize concurrent threads:

• guards: predicates associated with the methods of
the object; the execution of a method will be
delayed until the corresponding guard evaluates
true;

• locks: allow a fine-grain control on thread and
transaction synchronization.

MODA provides a mechanism to improve
concurrency by exploiting the semantic knowledge of
object operations, and in particular commutativity of
operations [8]. In the simplest case the only two
transaction operations one may consider are read and

write object attributes. In general, object operations are
not simply read and write but may be more abstract; if
the semantics of object operations is taken into account it
may be possible to permit much more concurrency and
waits will be caused by conflicts based on the application
semantics and will occur less frequently. For each
MODA object template, the programmer can specify a
conflict relationships between the object operations; two
conflicting operations will be serialized, while two
compatible operation will be admitted concurrently.

The model relies on a programmable locking tool as
concurrency control protocol. In addition to the usual
shared and exclusive lock-modes, dealing with abstract
operations requires specific lock-modes such that two
lock-modes are compatible iff their corresponding
operations do not conflict.

Creation and deletion of instances
MODA allows a distributed system to deploy several

instances of the same BB template, possibly on the same
node. A request to instantiate a new BB specifies:

• the name of the BB template;
• the list of actual parameters used to configure the

instance;
• the name of the target node.
The actions performed when a BB is instantiated on a

node are:
• retrieving and loading the executable code on the

node;
• creating the BB-manager, whose initialization

phase performs the configuration of the BB;
• returning the interface reference of the BB-

manager.

An object in a BB may create new objects in the same
BB; object instantiation is specified by:

• the name of the object template;
• the list of the actual parameters used to initialize

the instance.

The instantiation of an object template consists of:
• the internal configuration of the object and

activation of its interfaces, and
• the execution of the initialization phase specified in

the template.

An object enters an idle state and waits for requests
arriving at its interfaces, after having completed its
initialization phase. When a request is received, it is
served by the object according to the described behaviour
and the synchronization constraints.

MODA addresses also the paramount issue of
creation and deletion of objects within transactional
context following these rules:

• if the creating transaction aborts, the object will be
deleted;

• if the deleting transaction aborts, the object will be
re-instanced and its state restored as if it had never
been deleted.

• the object must only serve requests coming on
behalf of the creating transaction until commit.

This behaviour prevents transactions (other than the
creating one) from accessing an object that may be
deleted if the creating transaction aborts.

The transactional behaviour of creation and deletion
stems from the transactional semantics of the methods
implementing the initialization and termination phases
of the object. The implicit constraint is that the
initialization and termination methods conflict with all
other transactional methods and, as such, they are
protected by an exclusive-lock.

When a transaction creates an object it acquires the
exclusive-lock associated with the initialization method;
in this way no transaction other than the creating one can
access the transactional services of the object. Then:

• if the creating transaction commits, it releases the
exclusive-lock thereby allowing other transactions
to access transactional operations;

• if the creating transaction aborts, the object is
destroyed and the waiting transactional requests are
sent back with a failure code.

Access to architectural services
The model can be enriched with additional

architectural services. One of these is the Trader which
realizes the same functionalities of the Trader in ANSA
[9].

3. The ODIN platform
ODIN is a set of constructs to program "in-the-large"

a distributed system according to MODA's concepts.
ODIN consists of two parts:

• a language to declare interface, object and BB
templates;

• a C++ library, which forms an API for the
behavioural primitives of the platform.

The definition of an ODIN application consists of:
• a set of interface template;
• a set of object templates, which are servers and

clients of services offered by interface templates;
• a set of BB templates, which group object templates

in software packages.

3.1. Building Block
A BB is specified by a named template; the BB

template lists the object templates whose instances can be
created and executed in the BB, as indicated in Fig. 2.

Fig. 2: building block template

A BB template may have several instantiations,
possibly on the same node, each identified by a different
logical name. The following construct instantiates a BB
identified by the logical name L, from the template T, on
the node N, with optional parameters to be passed to the
BB-manager:

ret = ODIN_CreateBB_T("N","L",a1,.,an,&r1,.,&rm,&BBRef);

The reference BBRef to the main interface of the
BB-manager is automatically exported to the Trader
along with the properties: name = L; node = N; template =
T.

The following construct terminates the BB whose
manager interface is referenced by BBRef :

ret = ODIN_DestroyBB(BBRef);

The above constructs have a synchronous blocking
semantics.

3.2 Interface types
An interface type defines the services provided by an

interface (Fig. 3):
• the operations: the name, the signature and the

invocation mode (synchronous/ asynchronous);
• the attributes: the name, the type and the access

mode (read or read & write);
• possible transactional behaviour of operations;
• the notifications: the name and the argument types.

In addition in an interface type it is possible to define
structured data types. The interface type can be defined
as an extension/subtype of other interface types.

Fig. 3: interface template
3.3. Objects

Objects are created by instantiating parametric object
templates (Fig. 4) which specify:

• the formal parameters used to initialize instances;

• the state variables;
• the behaviour of the creation and termination

phases;
• the interfaces templates offered by the object. For

each interface template the object must specify the
methods that implement the operations offered by
the interface. In the event that an operation has
"open" transactional semantics, the specification
includes both the primary and the inverse methods;

• the notification handlers to deal with notifications
received upon request. The declaration specifies the
type of the notification and the method to be
executed when the notification is received;

• the lock conflict table of object methods;
• the behaviour of the object in C language:

- the initialization and termination phases;
- the methods implementing the operations

provided by the interfaces;
- the notification handlers;
- the guards associated with the methods.

An object can create other objects in the same BB to
which it belongs. The construct for creation specifies the
actual parameters and the placeholders for the results of
the initialization phase and for the main interface
reference of the created object:

ret=ODIN_Create_ObjTemplate(a 1,.,an,&r1,.,&rm,&ObjIfref);

Objects cannot destroy other objects, though an object
can terminate itself by the construct:

ret = ODIN_Terminate();

After the completion of the ongoing activities, the
termination phase is executed and the object space is
freed.

Fig. 4: object template

Invocation of operations
ODIN supports both interrogations and

announcements. The following construct invokes the
operation OpName on the interface referenced by Ifref
of type TypeName :

ret = TypeName_OpName(Ifref,a 1,...,an,&r1,...,&rm);

If the operation is an interrogation it will be invoked
in blocking mode. In order to invoke an interrogation in
deferred-blocking mode the following two constructs are
related by a variable v of type ODIN_voucher :

v = TypeName_OpName_Fork(Ifref,a 1,...,an);
.....
ret = TypeName_OpName_Join(v,&r 1,...,&rm);

The constructs above are akin to the ones adopted in
the static access mode in CORBA .

The following constructs allow the client to read and
write the value of the attribute AttrName visible at the
interface referenced by Ifref of type TypeName :

ret = TypeName_Get_AttrName(Ifref,&curr_value);
ret = TypeName_Set_AttrName(Ifref,new_value);

A client can register its interest to the notification
Name emitted by the interface referenced by Ifref of
type TypeName through the construct:

ret = TypeName_ODIN_Request(Ifref,"Name",HandlerName);

where HandlerName is the name of the handler
declared in the client template. The client can retract its
interest through the construct:

ret = TypeName_ODIN_UndoRequest(Ifref,"NotifName");

An object can emit a notification NotifName
declared in the interface IfName of type TypeName ,
through the construct:

ODIN_Emit_TypeName_NotifName(IfName,a 1,...,an);

the infrastructure will send the notification
NotifName(a 1,...,an) to all subscribed objects.

Transactional primitives
An object can transactionally update its internal state

through the call:

ret = ODIN_TransactionalCopy(StateVar,NewStateValue);

which must be executed on behalf of a transaction; if
the transaction aborts the state of the variable will be
restored to the old value (before-image recovery).

A lock of mode Mode (which may be either shared
or exclusive) on the variable VarName can be requested
through the call

ret = ODIN_LockWait(VarName,Mode);

if the lock is requested on behalf of a transaction it
will automatically be released at its completion,
otherwise it has to be explicitly released by:

ret = ODIN_LockRelease(VarName);

The code of a primary method implementig an open
transactional operation may specify the values of the
parameters par1,..,parN of the inverse method in
the event that the operations has to be compensated:

ret = ODIN_LogCompensate(par1,...,parN);

4. Implementation of ODIN over DCE/C++
The current implementation of ODIN is based on

DCE/C++. The main rationale at the basis of DCE's
choice is that OSF/DCE is a widely accepted industry
product and may support transactional features by
adding Transarc/Encina. To manage open nested
transactions we realized an eXtended Transaction
Manager (XTM) laid over Encina/TRAN; since
Encina/LOCK provides a static set of lock-modes, we
developed a Programmable Lock Manager (PLM) that
allows the programmer of each object template to define
a conflict table of lock-modes.

The usage of C++ enables a smooth interfacing
among the distributed object model and a variety of
(available or under development) OO software, including
OODBMS's.

The implementation is based on the following
mappings:

• BBs are translated into DCE servers;
• object templates are translated into C++ classes,

while an ODIN object becomes a C++ object
running into a DCE server;

• ODIN interfaces are translated into DCE
interfaces;

• references to ODIN interfaces are C structures that
contain information on how the interface may be
reached;

The following sections briefly describe the main
aspects of this implementation emphasizing the
transactional structures.

4.1. Coding of interface references
An interface reference (offered by an object obj

running on a BB bb) contains information on how the
interface can be reached. This information consists of
three fields:

1) the logical name of the BB bb;
2) the logical pointer to the C++ object corresponding

to obj;
3) an integer value that identifies the particular

interface provided by the object.

The usage of logical names allows the decoupling of
interface references from physical addresses so as to ease
run-time migration and reallocation of BBs. The
mapping from logical names to physical addresses is
accomplished at runtime by architectural objects.

4.2. The structure of a DCE server
A BB template is transformed into the executable

code of a DCE server. The DCE server is the
environment to create, invoke and execute the C++
objects corresponding to the objects in the BB. The DCE
server provides the union of the interfaces of the object
templates supported by the corresponding BB, and its
behaviour consists of a set of C++ classes corresponding
to the objects templates in the BB.

The main components in a DCE server are (Fig. 5):
• the DCE stub routines for the interfaces provided

by the server;
• the C++ classes corresponding to the object

templates supported by the BB;
• ODIN stub routines to perform invocations of

methods of C++ objects.

Fig. 5: internal structure of a building block

When the server receives an invocation on one of its
interfaces, it must deliver the invocation to the correct
C++ method. Indeed, an interface provided by a DCE
server is shared by all objects that support the same
interface template; this means that the server may have
multiple implementations (called manager routines in
DCE) of a single interface.

4.3. The eXtended Transaction Manager
Beginning a transaction amounts to creating a

transaction object. A transaction object encapsulates the
information pertaining the transaction service:

class transaction {
protected:
 trans_id tid; // transaction identifier
 lock lock_list[]; // locks held by the transaction

 register_lock (lock *granted_lock) {....}
public:
 transaction () {tid = Begin_Transaction(.....); }

 commit () {....}
 abort () {....}
}

The protected method register is called by a lock
to insert itself within the transaction's lock-list.

The class open_transaction is a subclass and
allows the definition of open nested transactions by
adding the method log_compensation to indicate
the code to be invoked if the transaction needs
compensation:

class open_transaction : transaction {
private:
 void (*comp_procedure)();

public:
 log_compensation (void (*proc)(), void par1,...., void
parN) {
 comp_procedure = proc;

 // save par1,..., parN
 }
}

The behaviour of the method commit depends upon
the nature of the transaction. An open transaction is
actually completed by triggering the commitment
protocol among the participants; whereas a closed
transaction only commits relative to its parent.

The method abort forces the abortion of the
transaction causing all its children to be aborted or
compensated:

• all active subtransactions are aborted;
• all committed closed subtransactions are rolled

back;
• all committed open subtransactions are

compensated by issuing the procedure registered
with log_compensation().

4.4. From DCE operation invocation to C++ method
call

As mentioned before, a relevant task of the DCE
server is to deliver an invocation to the correct C++
method. This selection (for a generic operation Op at an
interface of type Type) relies on a four layer code
structure:

• server stub code: this code is generated by
compiling the DCE/IDL definition of an interface,
and is in charge of unmarshalling the parameters
of the invocation;

• manager code: this C code invokes the
bridge_Type_Op() , forwarding the C++
logical pointer, the interface identifier, the
arguments and the pointers to the results;

• bridge code: this C++ code performs a first
switching among the possible C++ classes which
have an interface Type ; this code uses the C++
logical pointer to select the right object instance (by
looking up an internal mapping table), and the
corresponding class member _ODIN_Type_Op()
function is invoked, passing the interface identifier,
the arguments, and the pointers to the results;

• object code: the last switching concerns the
selection of the interface (an object may have more
than one interface of the same type). This function
is in charge of concurrency and transaction
management and calls the right C++ method, in
accordance with the operation/method association
in the object template. Below is a skeletal code of a
generic _ODIN_Type_Op() method. For the
sake of clarity, we will concentrate only on the way
transaction facilities are integrated to support
transaction transparency by abstracting out some
details. Consider the declaration of a transactional
operation Op with open semantics:

Intf_Type [Op -> primary_method1 - inverse_method1];

The compilation of this interface will yield the
following _ODIN_Type_Op method:

_ODIN_Type_Op(intf_discr, a 1,..., an, r1,..., rm)
{
 transaction *TID, *newTID;
 TID = get_thread_association(); (1)
 obj_lock.wait(TID, primary_method); (2)
 newTid = new open_transaction(TID); (3)
 put_thread_association(newTID); (4)
 switch intf_discr {
 case 1: {
 status = primary_method1(a 1,...,an,&r1,...,&rm,
&l1,...,&lk); (5)
 if (status == SUCCESS) {
 newTid -> log_compensation(inverse_method1,
l1,..., lk); (6)

 newTid -> commit();
 } else
 newTid -> abort(); (7)
 }
 case 2: {

 }
}

(1) the current transaction is retrieved from the
thread.

(2) each C++ object, derived from an ODIN object
template, embodies a lock object to schedule the
execution of the transactional methods. The call
obj_lock.wait blocks the thread until the
transaction is allowed to execute the method. Note that
the lock is requested in a mode corresponding to the
method's name.

(3) an open subtransaction is begun.
(4) the thread is associated with the new

subtransaction.
(5) using the interface discriminator, the primary

method implementing the behaviour of the operation is
delivered, in this case primary_method1 . The
method will return the actual parameters l1,..., l k
for the inverse method.

(6) if the call returns with SUCCESS
(return_with_commit in the user method), the
inverse method and its parameters are registered with the
transaction object (this step is skipped if the
subtransaction is not an open transaction). The
subtransaction is committed.

(7) if the call returns with FAILURE
(return_with_abort in the user method), the
subtransaction is aborted.

The invocation of a generic operation Op of an
interface of type Type at the client side is much simpler,
through the following layers:

• call layer: it performs the mapping from the
logical name of the BB address onto the real one
(by asking the architectural objects to resolve the
mapping), and saves the result into an internal
cache; then it invokes the rpc operation Op() ;

• client stub code: this DCE generated code marshals
the arguments, invokes the rpc and then
unmarshals the results.

If the server interface belongs to the same BB as the
client does, the "call layer" performs a shortcut by
calling the corresponding "bridge" routine within
the same BB.

Different routines in the call layer implement
different kinds of invocations (blocking synchronous,
deferred/non-blocking synchronous and asynchronous):

• blocking synchronous: the calling thread performs
a rpc which keeps it blocked until the reply from
the server arrives;

• deferred-blocking synchronous: the calling thread
spawns a new thread that performs the rpc; when
the original thread wants to collect the results,
"joins" the spawned one and acquires the results;

• asynchronous: the calling thread spawns a new
thread that performs the rpc, and then cancels
itself.

4.5. From ODIN object templates to C++ classes
A C++ class is generated for each ODIN object

template. The private state variables of this C++ class
can be grouped in the following sets:

• the state variables defined in the ODIN template;
• the reference variables which refer to the interfaces

defined in the template;
• the internal data structure for concurrency control,

registration of notifications, etc.
All the functions defined in the implementation part

of the template become private methods of the C++ class.
The public methods of the class are:

• the Init method invoked during the initialization
phase;

• the methods invoked by the bridge code (the
ODIN<Type>_Op() functions previously
discussed);

• the class constructor that performs internal
initializations;

• the class destructor that performs the termination
phase.

5. Related works
The approach of integrating C++ and DCE has been

carried out also by [13], where transactional aspects,
subtyping and notifications are not covered, and [14],
where a C++ encapsulation of the DCE functionalities is
described.

6. Conclusions
Though the performance issue is very delicate and

subtle, from our experiments we obtained performance
results, from the communication point of view,
comparable to the bare DCE platform. As a testbed
application, it is being used as the distributed processing
environment for a connection management application.

Some open issues still remains, among them the most
important are:

• introduction of persistent objects by integrating an
OODB into the existing platform;

• porting of the actual implementation over a
CORBA platform.

Bibliography

[1] ISO/ODP, Basic Reference Model of ODP-part 3:
Prescriptive Model , ISO/IEC JTC1/SC21 N8125 (June
1993).

[2] P.G. Bosco, G. Martini, C. Moiso, A Distributed Object-
Oriented Platform based on DCE and C++ , in Proc.
ICODP '93 (Sept. 1993)

[3] N. Natarajan, F. Dupuy, N. Singer, Computational
Modelling Concepts, TINA Consortium (Dec. 1993).

[4] P.G. Bosco, G. Giandonato and C. Moiso, A distributed
processing model for telecommunication services and
operations software, in Proc. TINA'93 (Sept. 1993).

[5] OSI/NM,Information Technology - OSI - Management
Information Services - Structure of Management
Information, ISO/IEC JTC1/SC21 N01165 (1991)

[6] E. Moss, Nested Transactions, MIT Press (1985)
[7] G. Weikum, Concepts and Applications of Multilevel

Transactions and Open Nested Transactions , in Database
Transaction Models for Advanced Applications (1992)

[8] W. Weihl, Commutativity-Based Concurrency Control for
Abstract Data Types, IEEE Trans. Comp. (Dec. 1988)

[9] APM Limited, ANSAware 3.0 Implementation Manual ,
(Jan. 1991).

[10] OMG, The common object request broker: architecture
and specification , OMG Document Number 91.8.1 (Aug.
1991).

[11] OSF, Introduction to OSF DCE,Prentice Hall (1992).
[12] Transarc Corporation, ENCINA, Transarc Corporation

(1991).
[13] M.U. Mock, DCE++: Distributing C++-Objects using OSF

DCE, in Proc. International DCE Workshop (Oct. 1993).
[14] J. Dilley, Object-Oriented Distributing Computing with

C++ and OSF DCE , in Proc. International DCE
Workshop (Oct. 1993).

