
Specifying and Developing TINA Applications with ACE

Piergiorgio Bosco, Gianni Canal, Giovanni Martini, Corrado Moiso
CSELT

Via Reiss Romoli, 274
10148 Torino, Italy

{piergiorgio.bosco, gianni.canal, giovanni.martini, corrado.moiso}@cselt.it

Abstract
The objective of the paper is to present an innovative

environment (Application Construction Environment -
ACE) for the specification, the development and the
generation of Telecommunication applications according
to the TINA and OMG standards. The functionalities
offered by the environment are outlined in the following
sections, in addition to experiences of usage of ACE for
specification activities.

The work presented in this paper has been partially
funded by the European Union in the context of the ACTS
ReTINA project (AC048).

1. Introduction

The motivations for developing ACE (Application
Construction Environment) were to allow the
specification, development and the generation of
applications according to the computational model of
TINA, with a particular emphasis on the aspects which
nowadays are more difficult to be found in commercial
tools.

In the IT world the available object-oriented CASE
tools for distributed applications currently are more
oriented to code generation than to support the
specification process. However there is some attempt at
improvement due to defacto standard architectures such
as CORBA [6] and MS OLE (distributed OLE) [13]
which allow to consider architectural principles in the
early stages of specification. In fact some CASE tools are
able to generate applications based on these architectures.
These typically generate description languages such as
IDL for CORBA and OLE types for MS OLE, from the
analysis models (GUI, architecture early phases,
application logic and Data logic are forced to be kept
separate); finally they also generate the stubs that deal
with the distribution mechanics. This approach offers a
good starting point for later design/development phases,
however it represents only a small step further, since it

still lacks the expression of constructs or “services” such
as transactions, persistence, concurrency, typical of
distributed object environments. Not to say, other
requirements traditionally well considered in the telecom
industry, such as more formal behavioural description,
validation of specifications, performance evaluation etc.
are, usually, not addressed in a integrated way. Notably,
only SDL-based CASE environments, approximate this
level of requirement coverage.

However standard languages familiar to the
telecommunication community such as SDL or LOTOS
and their latest evolution (that at least addresses some of
the behavioural description requirements) do not have
sufficiently matched the object-oriented models and
behavioural concepts inherent of the recently emerged
architectures mentioned above.

In general the lack of a complete formalism for object-
oriented distributed processing models is one of the
causes of the absence of CASE tools suitable to support
the design phases of a system according to such models.
This problem can be addressed to some degree by
following a pragmatic approach to apply and extend
existing notations such as OMT, SDL, CORBA IDL and
TINA ODL etc. to distributed computational
architectures.

ACE therefore aims at providing functionalities to
support main application lifecycle phases, and to
represent, in terms of development, a nut-shell for a
number of tools, specification editors,
development/compiler tools, performance evaluation tools
and code generators, etc., from within the
analysts/designers/developers all together orchestrate.

2. ACE Functionalities

In this section the main functionalities supported by
ACE are outlined. For the sake of clarity, in Figure 1 an
overview of the main phases of the development lifecycle
supported in ACE is illustrated. From the set of the ACE
editors it is possible to produce code both for the
simulation environment and for the real platform. The

specifications (aligned with the TINA Computational
Model [1]) can be executed in a simulated environment,
for a first functional validation of the service logics, that
can be traced directly on the specification editors in order
to achieve a better comprehension of their execution.

C++
COMPILER

Visualizer

EDITOR
DPL CODE

GENERATOR

TRACER

CORBA/C++
GENERATOR

LINKER/
LOADER

NEW
APPLICATION

DPE

structural/behavioural
constructs

CODE
REFINEMENT

SIMULATOR
ER

mixed mode
simulation

Figure 1: overview of the development cycle

The code generated for the real platform, after a
refinement process of the implementation skeletons, is
ready to be installed and deployed on the DPE. In the
next sections the main components and features of the
environment are described.

2.1 ACE Computational Model

As far as conformance objectives towards TINA
Computational Model [1][8], the following computational
model is realised in ACE:
• objects have multiple interfaces;
• creation/deletion of objects and object-groups;
• interactions among objects, through interfaces:
 - invocations of operations: invocations can be either
blocking or non-blocking;
 - accesses (read/write) to attributes;
• concurrence control in multi-threaded objects: guards

and semaphores.

2.2 Editing Component

The editing component consists of a suite of graphical
editors. They support the detailed specification of
templates for object-groups and objects (including their
behavioural parts) and interface templates.

Editors for the analysis and design offer support for
the standard OMT object model notation, in addition to
the possibility of devising object interaction diagrams.
Previously defined components in TINA ODL [7] and
CORBA IDL [6] files can be imported in ACE, and
hereby used and extended.

Each graphical editor is associated to a (graphical)
language, consisting of a set of dedicated and customized
icons and rules on their composition and interconnection
through (labelled) links. The icons can have attributes
that are specified through dialogue-boxes: the attributes
are introduced by a sequence of dialogue-boxes, where the
structure of a dialogue-box depends on the attributes
introduced in the previous ones.

Objects’ methods are specified by means of a
behavioural editor in a flow chart language, where the
icons, derived from SDL symbols, are specialised to
represent behavioural constructs of the computational
model (e.g. invocation of an operation), control constructs
(e.g. if-then-else constructs) and synchronisation
constructs.

2.3 Syntactic and Semantic Checking

ACE performs global syntax and type checks of the
specified templates (e.g. all the constructs and
declarations are type-checked, the syntax of the attributes
of the icons is controlled). The global checks can detect
errors even if no errors were signalled during the editing
of a template: in fact, for example, after the change of a
variable declaration all the expressions where it occurs
may be badly typed.

If the global analysis successfully terminates, it
generates an intermediate code representation of the
template, that holds all the information concerning the
semantics and the typing of the templates, and is used as
input to all the final code generators.

2.4 Simulation and Visualization of Specifications

The user specification can be automatically translated
into a multiparadigm language that can be used to
execute them in a (sequential) simulated environment.

In this way, it is possible to model behavioural
evolutions of objects dynamics, and, with the provision of
an internal scheduler, to support the execution of
concurrent entities within the simulation environment, by
providing in this way interleaving semantics.

Mixed mode simulation
Though the provision of a simulated environments has

proved to be sufficient for the validation of user specified
service logics, it shows a certain degree of inadequacy
when developing service components making intense use
of already deployed services.

This issue has been tackled devising a mixed mode
simulation extension, that allows simulated components
to interact with applications and services executing on the
real CORBA platform. The interaction of simulated and
real world allows the possibility of validating more
complex service logics specified by the user (involving

interactions with already deployed services), by executing
them in a controlled and secure environment.

 Figure 2: behavioural and object template editors

Visualisation and tracing of executions
The execution of specifications during a simulation

can be visualised in two different ways:
- model oriented: the executions are traced in terms of

concepts of the computational model (e.g.
interactions through interfaces);

- application oriented: the specifications are coupled
with scenarios that represent the agents and the
artefacts involved in the application (e.g., telephones,
switches,...).

The model oriented visualisation is based on the user
selectable trace of behaviour diagrams and of object
states. These functionalities are tightly integrated with the
editing component, in order to trace the executions on the
same graphical representation of specifications. The
users can interact with the execution by invoking
announcements of the objects, define break-points or
inspect objects’ state.

The application-oriented visualisation (explicitly
programmed by the specifier) is based on an interface
through which the users can introduce inputs to the
application (e.g. by means of dialogue-boxes) and the
application can provide outputs in a graphical way (e.g.
through animations).

An additional output resulting from a simulation
session consists of the automatic production of object
interaction diagrams. They ease the task of comparing
required output with the effective implemented results.

2.5 Validation and Performance Evaluation of
Specifications

At present, functional validation of specification is
assumed to be carried on in a user-based interactive way

(see 2.4), although a more automated approach has also
been devised. It uses technology for exhaustive state space
exploration based on SPIN+[2], an extended model
checker based on a timed version of PROMELA.

The technical approach chosen for the performance
evaluation of an application is the simulation of its
specification, augmented with a non-functional
characterisation of the significant activities, i.e.:
• duration of activities: single actions or groups of

actions can be given a duration (possibly stochastic);
• mapping of objects and messages on computing and

communication resources: each object-group is
"deployed" on a physical processor;

• weighting of non-deterministic choices.
The same compiler used for the validation is currently

used for performance evaluation. A number of
executions of the PROMELA model are run and, out
of them, estimates are calculated for the desired
system parameters. The definition of the performance
indexes is embedded within the system specification,
as well as validation properties.

2.6 Code Generation for Real Distributed Execution

ACE provides a code generator to produce
CORBA/IDL and C++ for deploying and running the
applications on real CORBA platforms (Iona Orbix [4]
and Chorus COOL Orb [3]).

The actual mapping tackles and solves the differences
between the object model of the TINA computational
model and the one supported by the CORBA [6] binding
with C++ language. One of this differences concerns the
support for objects having multiple dynamic interfaces, as
prescribed by the TINA computational model and not
equally present in the CORBA C++ mapping. It is in the
process of the code generation that this semantic gap is
fulfilled by proper object composition and dedicated “glue
code” that reduce the mismatch between the two different
models.

The code generation covers the production of both the
declaration part of templates and the behaviour parts
which are specified through the graphical diagrams.

As far as interfaces are concerned, CORBA IDL code
is generated automatically starting from the graphical
specification of an interface, as well as the contrary (i.e. it
is possible to import externally defined interfaces
specified in CORBA IDL, and generate the corresponding
graphical specification, in order to be later re-used in the
development of a component). Likewise, starting from the
object specifications (structural and behavioural sections),
skeletons C++ implementations are generated
automatically from the SDL-like behavioural notation.

3. Experiences in using ACE

ACE is the reference environment within CSELT to
specify object-oriented distributed systems for the control
and the management of services and network resources.
In particular, it has been exploited, in traditional IN and
TINA contexts, just as a specification environment or also
as a development environment.

In the context of IN-like service specification, ACE is
used as a tool to specify the components of services
allocated on the different IN systems (e.g., SSP, SCP,
SMS) and their interactions. In addition, in order to
visualise the behaviour of a service from the point of view
of the users, it was exploited the animation tools provided
by the environment.

The TINA components that, at the moment, have been
specified through ACE are:
• the session control, in particular the GSC component;
• the access session (i.e., the objects that perform user

registration, service browsing, service invocation and
user invitation;

• some modules of the specifications of the Connection
Management, developed in the context of the TINA
World Wide Demo [11].

The specifications of these components refined the
definition provided by TINA Core Team and extended it
by providing the behaviour in a formal language. During
their development several feature of the environment
were successfully exploited; in particular:
• the import in the environment (textual) IDL

specification;
• the SDL-like formalism to express the behaviour of

the system;
• the simulator to verify the correctness of the

specifications and the tracer to perform their
"debugging";

• the code generator to produce a first version of the
implementation on the Iona/Orbix CORBA platform,
to be refined to obtain the final code.

The possibility to formally define the behavioural
aspects of the specification pointed out several aspects
that were not properly covered by a specification of
structural aspects and a description of the behaviour in
natural language. In fact, the use of SDL-like formalism,
aligned with the computational concepts, and forces the
production of easily implementable specifications on a
distributed platform. A possible example concerns the
configuration of a set of objects: ACE forces to specify the
actions and the invocations necessary to pass the
necessary interface references to all the instances.

The production of computationally complete
specifications is stressed also by the possibility to run the
specifications in the simulated environment which covers
the main aspects of a distributed platform. It was
experimented the possibility to describe the behaviour in

ACE at different level of detail: for instance, the
specification of TINA GSC component includes objects
whose behaviour was defined in a very detailed way
(similar to the detail level of traditional implementation
language), while the specification of TINA access session
was produced through a process of incremental
refinements to reach the satisfactory level of detail.

The analysis phase was performed on the design
editor that provides a superset of the functionalities of
analysis one. In this phase was detected the lacking of a
support to the definition of object interaction diagrams.

The previously described specifications were mainly
written by persons which were not involved in the
development of ACE. The training period was about one
week, provide that they have some knowledge of the
computational model concepts and constructs underlying
ACE. This training period does not consider the tools
supporting the definition of animation scenarios: at the
moment the training period of these tools is tightly related
to that required by Metacard. In addition to available
documentation/manuals the training required some
interactions with the designers of the environment. The
development of TINA specifications of session control
and access session considered in this section took about
two months each.

These experiences detected some weak points of the
current version of ACE. The principal ones concern the
simulation and the code generation. In particular, it was
detected some limits in the simulation of complex systems
with very detailed object behaviour; for instance it was
not possible to simulate some objects of TINA GSC,
whose methods were defined at a C-like level of details.
While the code generation is satisfactory for the aspects
concerning the structure of the applications (e.g., the
production of CORBA servers from BB specifications and
the handling of objects with multiple interfaces), at the
moment it presents some limits in the generation of C++
methods, that require a general revision of the produced
code. Some improvements are also required to the
generation of documentation, mainly related to the
aspects concerning the documentation of object
behaviour.

As mentioned before, strong points that were
confirmed are the possibility to specify both structural and
behavioural aspects and to simulate the specifications.
The simulation was exploited both to "debug" the
specifications and to demonstrate the evolution of the
specified systems; at this aim, the experiences showed the
benefits of having both the tracing of specifications and
the animation of application scenarios. Another strong
point is the possibility to generate code for a real
distributed platform, also with the current limitations,
that contributes to speed up the implementation of
specifications.

ACE is also used within the TINA Core Team for the
validation [10] of some of the Reference Points, providing
support for rapid prototyping and specifications in terms
of IDL, ODL files and OMT diagrams.

Finally, in the lifetime of the ACTS ReTINA
project[12], ACE is the core environment providing
support functionalities for the definition, validation, and
code generation of service components.

4. Conclusions

ACE is still evolving, and in the short term extensions
are expected, in order to increase the offered
functionalities. Among them, the support for the Java
platform, at language and infrastructural level. The usage
of alternative platforms (e.g. DCOM) for the distribution
aspects will also be object of extensional activities.

At the present stage ACE is however an advanced
integrated environment for distributed object oriented
applications compliant to TINA computational model,
and its support has proved of value in the development of
new applications.

A public domain version of ACE can be obtained from
the authors: http:// andromeda.cselt.it/ace/ ACE.html .

5. References

 [1] TINA-C deliverable: Computational modelling
concepts, vers. 3.2, TINA Consortium, 1996.

[2] E.Chiocchetti; R.Manione, P.Renditore: Specification
based performance evaluation of distributed systems
for telecommunications, Tools'94, 1994.

[3] Chorus Systeme: COOL-ORB Programming Model,
Technical Report, 1994.

[4] Iona: Orbix 2 Programmer Guide, 1995.
[5] J.Rumbaugh et al.: Object-Oriented Modeling and

Design, Prentice Hall, 1991.
[6] OMG: The common object request broker

architecture and specification revision 2.0, OMG
Document Number 95.07.01, 1995.

[7] TINA-C deliverable, TINA Object Definition
Language, TINA Consortium, 1995.

[8] P.G.Bosco; G.Giandonato; C.Moiso: A distributed
processing model for telecommunication services and
operations software, Proc. TINA'93, 1993.

[9] N.Bersia, P.G.Bosco, G.Canal, R.Manione, C.Moiso,
M.Spinolo: A Case Environment for TINA-oriented
applications, Proc. ISS’95, 1995.

[10] R.Westerga, M.Hedberg, E.Darmois: Using ACE for
the validation of TINA Reference Points, Service
Creation Workshop, Como, 1997.

[11] G.Spinelli, W.Takita, G.Martini, S.Chikara: TINA
Connection Management Implementation over
Distributed Processing Platforms, Proc. NOMS ‘96,
1996.

[12]ReTINA:http://www.chorus.com/Documentation/retin
a.html.

[13] K.Brockschmidt, Inside OLE 2, MS Press, 1995

