
To appear in Proc. IFIP/IEEE IM’97

1

ACE: An environment for specifying,
developing and generating TINA
services

P.G. Bosco, D. Lo Giudice, G. Martini, C. Moiso
CSELT
Via G. Reiss Romoli 274, 10147 - Torino - Italy ,
tel: +39 11 2286806, fax: +39 11 2286862,
{Piergiorgio.Bosco,Giovanni.Martini,Corrado.Moiso}@cselt.it

Abstract
The objective of the paper is to present an innovative environment (Application
Construction Environment - ACE) for the specification, development and generation
of Telecommunication services according to emerging standards such as TINA and
CORBA. We will briefly describe the service specifications and development lifecycle
requirements for distributed object applications in the telecom domain and how ACE
functionalities address them.

Keywords
TINA, CORBA, CASE, Specifications validation, Behaviour modelling

1 INTRODUCTION

The adoption trend of client-server and object oriented paradigms (e.g., ISO/ODP
(ISO/ODP, 1993), CORBA(OMG, 1991) and TINA (Handegard, 1995)) is now
occurring in various IT domains as well as in telecom ones. Actually, no matter the

To appear in Proc. IFIP/IEEE IM’97

2

domain in consideration, today no formal description techniques are available to
express in a complete, compact and natural way the concepts present in the models
mentioned above. This is especially true about the design phase of the development
lifecycle of distributed applications.
In the IT world the available object-oriented CASE tools for distributed applications
are currently more oriented to code generation than to support the whole specification
process (included behavioural description).
However there is some attempt at improvement due to the rise of defacto standard
architectures such as CORBA (OMG, 1991) and MS OLE (distributed OLE)
(Brockschmidt,1995) which allow to consider architectural principles in the early
stages of specification. In fact some CASE tools are able to generate applications
based on these architectures. These typically generate description languages such as
IDL for CORBA and OLE types for MS OLE, from the analysis models (GUI,
architecture early phases, application logic and Data logic are forced to be kept
separate) and finally they also generate the stubs that deal with the distribution
mechanisms. This approach offers a good starting point for later design/development
phases, though it represents only a small step further, since it still lacks the expression
of constructs or “services” such as transactions, concurrency, typical of distributed
object environments. Not to say, other requirements traditionally well considered in
the telecom industry, such as more formal behavioural description, validation of
specifications, performance evaluation etc. are not usually addressed in a integrated
way. Notably, only SDL-based CASE environments, approximate this level of
requirement coverage.
On the contrary, standard languages familiar to the telecommunication community
such as SDL or LOTOS and their latest evolutions do not have sufficiently matched
the object-oriented models and behavioural concepts of the recently emerged
architectures mentioned above.

In general, the lack of a complete formalism for object-oriented distributed processing
models is one of the causes of the absence of CASE tools suited to support the design
phases of a system according to such models. This problem can be addressed to some
degree by following a pragmatic approach to apply and extend existing notations such
as OMT (Rumbaugh,1991), SDL, etc. to distributed computational architectures.

ACE Objectives
The motivations to develop ACE were to allow the specification and development of
applications according to the distributed processing model of TINA and CORBA, with
a particular emphasis on the aspects which nowadays are more difficult to be found in
commercial tools, i.e. behavioural modelling. Also “openness” wrt the actual OO

To appear in Proc. IFIP/IEEE IM’97

3

distributed platform architecture was an additional requirement, which CSELT had
already started to address in previous versions (Bersia,1995).

There two main strategic reasons to the development of ACE are:
• To use ACE internally to support the specification and prototyping of services

according to overall TINA architecture (Service Architecture, Computing and
Information Architecture), to CORBA and OMG/COSS1 and OMG/COSS2 for
the basic Object Services (OMG,1995).

• To stimulate in the industry the development of “industrial quality” tools “á la
ACE”: ACE today is a running prototype which acts as a “live” requirement.

Last but not least, ACE aims at providing support for the main lifecycle requirements
as expressed in the TINA Service Architecture (Kobayashi,1995). It is a nut-shell for a
number of tools (specification editors, performance evaluators, code generators, etc.)
from which the analysts/designers/developers all together orchestrate.

2 REQUIREMENTS FOR TINA SERVICES DEVELOPMENT TOOLS
It is useful to identify a set of functional requirements that should be supported by a
development environment during the main stages of a TINA service lifecycle.

Browsers/Editors
The specification and the development of the components of a service should be done
by means of proper editors, customised ad hoc to the formalism used for the
specification. Advanced graphics, icons, links should be supported. The resulting GUI
of the tool should be highly customisable and adaptive to the developer’s needs.
The editors should be integrated with the other functionalities of the environment (e.g.
syntactic verification could interactively be invoked when new icons are introduced in
a diagram).

Validation & Simulation
Integrated provisioning of functionalities for the validation and verification of the
correctness of a service should be considered as a mandatory aspect to be supported. It
could be done according to different criteria e.g. wrt the specification, wrt
implementation (no programming errors), or wrt the performance and timing
constraints. The confidence about the suitability of an application is gained by
challenging its specification against a set of dynamic properties:
• Global properties: a set of constraints holds for all the system states and/or for

subsets of the states (e.g. a single critical resource can be always allocated to either
zero or one resource client).

To appear in Proc. IFIP/IEEE IM’97

4

• Local properties: a set of constraints holds for the trajectories across the state space
of the system and/or for the trajectories across a subset of the state space.

In both cases system state exploration (with interactive emulation or with exhaustive
emulation) seems to be the only practical approach to partially achieve the goal.

Performance evaluators
Performance of a service is one of the most important non-functional requirements.
The evaluation of the performances (e.g. response time or throughput of a service) can
take place at two main points in the lifecycle of application creation: the specification
phase and the acceptance phase.
In both cases the system specification can be taken as the model to study, provided
that the service has been implemented as specified. In the former case the objective is
to estimate the upper limits in the performances of the service, as functions of the size
of the resources; in the latter case the goal is to forecast the performances of the real
implementation with particular resource configurations and load situations.
The distributed nature of the computing environment, adds a degree of complexity,
since the communication infrastructure plays its own role in the whole performances.

Code Generation
Given the adoption of CORBA for what regards TINA DPE (Distributed Processing
Environment, computational model and services), the first main requirement of code
generation is to generate CORBA IDL.
Further sophisticated code generation is also required in order to meet TINA
extensions such as the support for “multiple interfaces”.
Also given the requirement of better satisfying “behavioural” aspects of the
Telecommunication services based on a distributed platform, generation that
integrates COSS basic services such as Transactions, Events and Trading could also
be foreseen. Main reference languages are the ones for which OMG has already
defined a mapping (C++) or is going to (JAVA).
Finally we also believe that targeting to environments such as MS OLE/COM is also a
requirement. In developing peripheral telecom services where MS Lans or MS
Desktops are part of the scenario, one would want to take advantage of the advanced
development environment present on MS platforms (e.g. for Service Creation) and of
the high number of “prefabricated” SW components based on MS OCX and OLE
Automation objects (Brockshmidt,1995) already available on such platforms.

Furthermore, whatever the target platform is, it is required to be able to trace the
behaviour of the service components (CORBA objects, OLE objects, ...) when they are
deployed. Specific selectable mechanisms for their tracing should be embedded in the

To appear in Proc. IFIP/IEEE IM’97

5

generated code. The tracing tool should provide enough information in order to
highlight the various interactions among service components themselves and the DPE
services.

3 ACE FUNCTIONALITIES

This section outlines the main functionalities supported by the ACE environment
satisfying the above requirements.

C++
COMPILER

Visualizer

EDITOR
DPL CODE

GENERATOR

DPL
MODULE

TRACER

CORBA/C++
GENERATOR

LINKER/
LOADER

NEW
APPLICATION

DPE

structural/behavioural
constructs

Emulated
Distributed
Environment

CODE
REFINEMENT

Figure 1 Overview of the development cycle in ACE.

For the sake of clarity, in Figure 1 an overview of the main phases of the development
lifecycle supported in ACE is illustrated. From the set of editors it is possible to
produce code both for the simulation environment and for the real platform. The
specifications can be executed in a simulated environment, for a first functional
validation of the service logics, that can be traced directly on the editors in order to
achieve a better comprehension of the execution of the user-level specifications. The
code generated for the real platform, after a refinement process of the implementation
skeletons, is ready to be installed and deployed on the DPE.

To appear in Proc. IFIP/IEEE IM’97

6

3.1 ACE COMPUTATIONAL MODEL CONFORMANCE

As far as conformance objectives towards TINA DPE (Handegard,1995) the following
computational model (Bosco,1993) is realised in ACE:
• Creation/Deletion of object and group instances (building-blocks).
• Asynchronous/Synchronous invocations of operations: invocations can be either

blocking or non-blocking.
• Accesses to attributes, to read/write their values.
• Subscription to a notification emitted by an object, indicating the notification

handler, i.e. the interface to be invoked when these notifications are received.
• Emission of a notification (to all the subscribers).
• Concurrence control in multi-threaded objects: guards, semaphores and close/open

nested transactions.

3.2 EDITING COMPONENT

The editing component consists of a suite of graphical editors. They support the
specification of templates for building-blocks (BBs) and objects, including their
behavioural parts, and interface templates.

Each graphical editor is associated to a (graphical) language, consisting of a set of
icons and rules on their composition and interconnection through (labelled) links, as
depicted in Figure 2. The icons can have attributes that are specified through
dialogue-boxes: the attributes are introduced by a sequence of dialogue-boxes, where
the structure of a dialogue-box depends on the attributes introduced in the previous
ones. Checks for syntax and type constraints are performed during the data input.
The selection of an icon associated to a specification sheet automatically opens the
corresponding editor on the associated sheet.

The BB editor (BBE) is the graphical editor to specify BB templates. Special icons
represent the object templates included in the BB template, and the contract
declarations (i.e. the interfaces accessible from the outside of the BB).

The object editor (OE) is the graphical editor suited to specify object templates, and
relies on the behaviour editor (BE) to specify their behaviour.
The specification of an object template is structured into a hierarchy of sheets.
• The declaration part: declaration of parameters, interfaces, internal state, methods,

local functions.
• The methods and functions, specified in graphical way.

To appear in Proc. IFIP/IEEE IM’97

7

Figure 2 Behavioural and object template editors.

The OE works on the declaration part, while the BE works on the methods/functions
graphically specified (Figure 2). The language associated to OE is a set of icon types
that represent the different declaration components of an object template.

Methods are specified by the BE. The language associated to this editor is a flow chart
language, where the icons, derived from SDL symbols, are specialised to represent
behavioural constructs of the computational model (e.g. invocation of an operation),
control constructs (e.g. method start, if-then-else, return, etc) and synchronisation
constructs (guards and locks).
The local functions of an object can be specified either in a graphical way through the
BE or in a textual way in DPL (see next section 3.4).

The interface editor (IE) is the graphical editor to specify interfaces, and declaring in

To appear in Proc. IFIP/IEEE IM’97

8

CORBA IDL operations, attributes, data types.

Interactive editing features
All the graphical editors provide interactive/adaptive editing features to drive the
production of specifications. For example when a new specification sheet is created
the editor initialises it with the mandatory icons, or when an icon is instantiated the
editor automatically opens the associated dialogue-box and highlights the mandatory
editing-fields.
Syntactic controls and type checking are performed as soon as the values of a
dialogue-box are confirmed.

3.3 SYNTACTIC AND SEMANTIC CHECKING

ACE performs a global syntax and type check of the specified templates. All the
constructs and the declarations are type-checked, the syntax of the attributes of the
icons is controlled and the syntax of graphical specifications is checked.
This global check can detect errors even if no errors were signalled during the editing
of a template: in fact, for example, after the change of a variable declaration all the
expressions where it occurs may be badly typed.
If the global analysis successfully terminates, it generates an intermediate code
representation of the template, which is used as input to all the final code generators.

3.4 SIMULATION AND VISUALIZATION OF SPECIFICATIONS

At present, functional validation of specification is assumed to be carried on in a user-
based interactive way, through the simulated execution. DPL (Distributed Processing
Language) is a multiparadigm language that can be used to fast-prototype applications
according to the computational model and to execute them in a (sequential) simulated
environment. By exploiting Prolog features, DPL is able to model behavioural
evolutions of objects dynamics, and, with the provision of an internal scheduler, to
support the execution of concurrent entities within the simulation environment, by
providing in this way interleaving semantics.

Mixed mode simulation
Though the provision of a simulated environments has proved to be sufficient for the
validation of user specified service logics, it shows a certain degree of inadequacy
when developing service components making intense use of already deployed services.
In this case, providing support from within ACE for their modelling does not seem
very practical and feasible. This issue has been tackled devising a mixed mode

To appear in Proc. IFIP/IEEE IM’97

9

simulation mechanism, that allows simulated components to interact with applications
and services executing on the real DPE (CORBA platform).

Figure 3 A simulation session.

Visualisation and tracing of executions
The execution of specifications can be visualised in two different ways:
• Model oriented: the executions are traced in terms of concepts of the

computational model (e.g. interactions through interfaces).
• Application oriented: the specifications are coupled with a user defined scenario

that represents the agents and the artefacts involved in the application (e.g., the
telephones, the switches, calls, and connections, as illustrated in Figure 3).

The model oriented visualisation is based on user selectable tracing of the behaviour
diagrams and of the object states, directly on the same graphical representation of
specifications. The users can interact with the execution by asynchronously invoking

To appear in Proc. IFIP/IEEE IM’97

10

announcements to the objects, defining break-points or inspecting state variables.
The application-oriented visualisation is based on an interface through which the
users can introduce, in an asynchronous way, inputs to the application (e.g. by means
of the mouse, dialogue-boxes,...) and the application can provide outputs in a
graphical way (e.g. through some animations).
The behaviour of this interface depends on the characteristics of the application and
must be explicitly programmed, together with some enrichment of the specification to
interact with the visualisation interface.

3.6 PERFORMANCE EVALUATION OF SPECIFICATIONS

The technical approach chosen for the performance evaluation of an application is the
simulation of its specification, augmented with a non-functional characterisation of
the significant activities, i.e.:
• Durations of activities: single actions or groups of actions can be given a duration

(possibly stochastic).
• Mapping of objects and messages on computing and communication resources:

each BB is "deployed" on a physical processor.
An already available process-based timed executor is being integrated into ACE (
SPIN+ (Chiocchetti,1994)). A number of executions of the model are run and, out of
them, estimates are calculated for the desired system parameters. The definition of the
performance indexes is embedded within the system specification, as well as
validation properties.

3.7 CODE GENERATION FOR REAL DISTRIBUTED EXECUTION

ACE provides a code generator to produce CORBA/IDL and C++ for deploying and
running the applications on a real CORBA platform. At the moment, the generation is
targeted for the Iona Orbix (Iona,1995) realisation, though the targeting to other
platforms (Chorus,1994) is an ongoing activity. Among them, of particular relevance
is the ReTINA distributed platform (Chorus,1995), a real-time CORBA platform.
The actual mapping tackles and solves the differences between the object model of the
TINA computational model (objects having multiple interfaces) and the one supported
by the CORBA binding with C++ language. In the process of the code generation this
semantic gap is fulfilled by proper object composition and dedicated “glue code” that
reduce the mismatch between the two different models.
The code generation covers the production of both the declaration part of templates
and the behaviour parts which are specified through the graphical diagrams.
As far as interfaces are concerned, CORBA IDL code is generated automatically

To appear in Proc. IFIP/IEEE IM’97

11

starting from the graphical specification of an interface, as well as the contrary (i.e. it
is possible to import externally defined interfaces specified in CORBA IDL).
Likewise, starting from the object specifications (structural and behavioural sections),
skeletons C++ implementations are generated automatically from the SDL-like
behavioural notation.

4 REFERENCE APPLICATIONS

ACE is the reference environment within CSELT for developing TINA compliant
services. Experience and useful suggestions have been gained by employing the
environment (though for minimal parts, and not in all its components) in the
definition of the specifications and functionalities for small scale projects within our
research group, regarded as proofs of concepts for the TINA Service Architecture.
Among them, it has provided a useful support for the definition and observation of the
specifications of the Connection Management module during the TINA World Wide
Demo (Spinelli,1996) allowing to trace and analyse the service specifications.
Within the ACTS ReTINA project, it is the core tool providing support functionalities
for the definition, validation, and code generation of service components.

5 FUTURE EVOLUTIONS

The activity on ACE is still evolving, and during the next months we’ll focus on 1)
the extension and the upgrade of existing functionalities towards TINA and OMG
standards, and 2) the inclusion of functionalities to keep pace with recent technology
evolutions in the market place (e.g. support for JAVA and for the Unified Modelling
Language (Booch,1996)).

Evolutions regarding 1) comprise the targeting code generation to different CORBA
(2.0) platforms (ReTINA DPE) and the support for specification written in TINA
ODL(Leydekkers,1995); the inclusion of other languages for expressing application
functionalities (e.g. Message Sequence Charts, Use Cases) and DPE basic services
abstraction. In this case, the idea is to simplify the use of low-level object services
(e.g.: naming, transactions, concurrency, etc.) by providing graphical entities (Icons,
symbols, etc.).

During ‘96 we plan also to expose the tool at major events such as: OMG Object
World Trade shows, etc. In order to stimulate and divulge ACE basic philosophy and

To appear in Proc. IFIP/IEEE IM’97

12

approach contacts with major vendors and tools developers various discussions are
underway. A public domain version of ACE can be obtained from the authors.

6 CONCLUSIONS

At the present stage ACE is an advanced integrated CASE environment for
distributed object oriented applications compliant to the emerging general and
telecom-oriented distributed processing standards. Even if not yet exhaustively
satisfied many of the requirements and gaps described in initial sections are addressed
in ACE.
Part of this work has been supported by the EEC ACTS AC048 project ReTINA.

7 REFERENCES

N.Bersia, P.G.Bosco, G.Canal, R.Manione, C.Moiso, M.Spinolo (1995) A Case
Environment for TINA-oriented applications, in Proc. ISS’95.

G.Booch, J.Rumbaugh, I.Jacobson (1996) Unified Modeling Language,Rational Rose.
P.G.Bosco, G.Giandonato, C.Moiso (1993) A distributed processing model for

telecommunication services and operations software, in Proc. TINA'93.
K.Brockschmidt (1995) Inside OLE 2. MS Press, Redmond.
E.Chiocchetti, R.Manione, P.Renditore (1994) Specification based performance

evaluation of distributed systems for telecommunications, in Proc. Tools'94.
Chorus Systeme (1994) COOL-ORB Programming Model. Technical Report, Paris.
Chorus Systeme (1995) , ReTINA, http://www.chorus.com/Research/retina.html
T. Handegard, N. Mercouroff (1995) Computational modelling concepts. TINA-C.
Iona (1995) Advanced Programmer Guide. Iona, Dublin.
ISO/ODP (1993) Basic Reference Model of ODP-part 3: Prescriptive Model.

ISO/SC21 N8125.
H.Kobayashi, K.Moor, C.Abarca (1995) TINA Service Architecture. TINA-C.
P.Leydekkers, N.Mercouroff (1995) TINA Object Definition Language. TINA-C.
OMG (1991) The common object request broker. OMG Document Number 91.8.1.
OMG (1995) CORBA Services: Common Object Service Specifications. OMG

Document Number 95.3.31.
J.Rumbaugh et al. (1991) Object-Oriented Modeling and Design, Prentice Hall.
G.Spinelli, W.Takita, G.Martini, S.Chikara (1996) TINA Connection Management

Implementation over Distributed Processing Platforms, in Proc. NOMS ‘96.

